Systèmes électroniques

10 étudiants

Digital ou Analog Electronics ?
Le traitement et le conditionnement d’un signal s’effectue selon deux familles de circuits qui appartiennent au
domaine de :
• l’électronique analogique (« Analog electronics »). L’information s(t) est véhiculée par une
grandeur continue dans le temps qui peut prendre une infinité de valeurs dans un intervalle borné
(fréquemment, la tension, plus rarement, le courant ou la puissance) :
∀ ∃ ∈ t A B s t A B , , | ( ) , { ( ) ] [}

Conceptuellement on localise les signaux analogiques d’un système en début ou en fin de chaîne
(respectivement capteurs ou actionneurs).
• l’électronique numérique (« digital electronics »). L’information s(t) est discrétisée dans le temps,
on la notera sk pour l’instant k de prise d’information, et est représentée ou codée par un nombre
fini de niveaux dont la valeur est représentée en base 2 (logique booléenne à base de 0 ou de 1).
∀ ∃ = = = = k A B C D E s Aou s B ou s C ou s D ou , , , , , …….. | … { ( ) k k k k }
avec par exemple A=00001110101
On différencie l’électronique numérique asynchrone de l’électronique numérique synchrone selon que
la fonction est réalisée en permanence ou à certains instants déterminés par les caractéristiques d’un
signal d’horloge.
Le son, l’image, la vidéo numérique sont autant d’utilisations quotidiennes de systèmes numériques
dont l’émergence a été facilitée par des techniques de compression de données et les composants
associés (microprocesseurs, DSP [Digital Signal Processing])
III.2 .– Composant actif ou composant passif ?
Un composant actif est un composant électronique qui nécessite une source externe d’énergie fournie par une
alimentation externe. Cet apport d’énergie externe confère au composant actif la capacité d’augmenter la
puissance d’un signal (tension, courant, ou les deux). Le transistor, l’amplificateur opérationnel, le processeur
sont des exemples de composants actifs.
Par opposition, un composant passif ne permet pas d’augmenter la puissance d’un signal et même bien souvent il
la diminue par effet Joule.
Diodes, transformateur, résistance, condensateurs, bobines, parfois agencés en structure pour réaliser des filtres
passifs sont des exemples de composants passifs.
Chapitre1 : Notions Elémentaires Systèmes Electroniques pour les Communications
3
III.3 – Niveaux de représentation de l’électronique
Le concepteur électronique ou le maître d’œuvre de tout système intégrant des fonctionnalités électroniques
échangent des informations de type :
• plan de principe qui spécifie les fonctions à réaliser. Un exemple d’un synoptique présentant un
émetteur/récepteur InfraRouge d’un Home cinéma est présenté
• schéma électronique qui présente la réalisation des fonctions au travers d’un agencement de
composants
UeA
Us3
UeB
Is
Is
Us1A
Us1B Us2
Is
• Plan du circuit imprimé (Printed Circuit Board) d’une carte électronique avec le dessin des
interconnexions entre tous les composants.
Systèmes Electroniques pour les Communications Chapitre1 : Notions Elémentaires
4
• Jusqu’à la fabrication/montage/tests fonctionnels de la carte électronique.
Remarques :
1) Le concepteur devra toujours s’efforcer de respecter le code de couleurs suivant :
• Alimentation positive : fil rouge.
• Alimentation négative : fil bleu.
• Masse : fil noir.
2) Une approche « industrielle » de la conception d’un système électronique consiste à décliner les spécifications
globales du système en différents blocs fonctionnels (les sous-systèmes) puis à les simuler. Ce découpage du
système en blocs élémentaires a pour objectif, outre le gain de temps dans le flot de conception, de valider
chaque sous-système indépendamment des autres en s’affranchissant dans un premier temps du problème de
l’interfaçage entre blocs. Typiquement si deux blocs A et B ont été validés séparément, si la connexion entre A
et B n’est plus fonctionnelle c’est que le problème se situe généralement aux interfaces (par exemple perte de la
fonction à cause d’une mauvaise adaptation d’impédance).
III.4 .– Analyse des circuits électriques
a) Générateurs / Récepteurs / Loi d’Ohm
Un générateur est un élément qui fournit de
l’énergie électrique en garantissant constant
une de deux grandeurs électriques
• on parle de générateur de tension
lorsque la fem E est le paramètre
constant (exemple d’une pile)
• on parle de générateur de
courant lorsque l’intensité i est
constante.
E
i
B
A
Z
iAB
uAB
générateurs récepteurs
Tous les autres éléments seront considérés comme des récepteurs électriques vérifiant la loi d’Ohm généralisée :
uAB = Z iAB, avec Z impédance du dipôle AB , impédance qui peut appartenir au corps des complexes.
Nombreux sommes-nous à nous interroger un jour sur la vigilance à apporter quant à la définition du sens positif
d’une intensité de courant. Il n’y a aucun risque, en respectant la convention récepteur (u et i de sens opposés) et
générateur (u et i dans le même sens), un choix arbitraire du sens positif conduira après résolution des équations
des mailles :
 a une intensité ou une tension positive dans le cas où le sens arbitrairement choisi est physiquement le
bon,
 ou bien à une intensité ou une tension négative dans le cas contraire. Le signe négatif permettant ainsi
de rester cohérent avec la physique des choses.
Pour l’anecdote, les scientifiques au début de l’étude de la conduction de l’électricité, ont pensé à tort que les
particules qui se déplaçaient dans les métaux étaient chargées positivement et ont défini un sens conventionnel
du courant comme étant le sens de déplacement des charges positives. Erreur, puisque ce sont majoritairement

  • Amplification

    On doit à George A. Philbrick vers 1938 le premier développement de « calculatrice analogique » baptisée « Polyphemus » en référence à la mythologie Grecque. C’est en 1943, que le terme « amplificateur opérationnel » est mentionné dans l’article « Analysis of Problems in Dynamics » de John R. Ragazzinni, rédigé avec le support technique de Philbrick pour le compte d’un projet « U.S. National Defense Research Council ». Cet article ne sera publié qu’en Mai 1947, alors que le premier amplificateur opérationnel à tubes le « K2-W tubes » est finalisé en 1952 par l’Institut de recherches George A. Philbrick. Une décennie plus tard, en 1963, Bob Widlar conçoit la première version d’A.O à base de neuf transistors: le"µA702” commercialisé par « Fairchild Semiconducteurs » dont les tensions d’alimentation ne sont pas encore symétriques (+12V et –6V) mais dont le prix de 300$ limite son application au marché aéronautique et militaire. En 1965, Widlar améliore son architecture en bande passante, gain et courants de polarisation et présente le « µA709 » qui offre des tensions d’alimentations symétriques (+15V et –15V). Le succès commercial est tel qu’en 1969 le prix se situe en dessous des 2$. La série des « LM101 » incluant une protection contre les court-circuits et une compensation en fréquence est présentée en 1967, et la version hybride « LH101 » avec capacité intégrée dans le boîtier. La version « µA741 » avec compensation interne est proposée en Mai 1968 par « Fairchild » avec le succès que l’on connaît…En 1974, « Raytheon Semiconductors » présente le « RC4558 », premier boîtier intégrant deux A.O. similaires au 741. La même année « National Semiconductor » commercialise le « LM324 », quadruple A.O toujours sur la base du 741 mais avec l’originalité de présenter une alimentation unipolaire. Le succès de l’architecture du 741 conduiront Bob Widlar à la retraite en 1970 à moins de trente ans. Consultant, il développera d’autres architectures et s’éteint à 53 ans le 27 Février 1991. Circuit de base des montages analogiques ou numériques, l’Amplificateur Opérationnel, abrégé A.O par la suite, est un circuit actif qui nécessite des sources d’alimentation (par opposition aux circuits passifs). Son champ d’applications s’étend depuis le traitement de grandeurs électriques, tension ou courant, (amplification, conversion, filtrage) issues de capteurs (microphones, thermocouples, photopiles, interrupteurs) jusqu’à la génération de signaux (par exemple oscillateurs sinusoïdaux ou numériques) capables de commander divers actionneurs (moteurs, haut-parleurs, résistances chauffantes, relais, etc...). Dans ce chapitre, l’A.O est présenté depuis sa description analytique et son modèle électrique équivalent nécessaires à l’étude des deux régimes de fonctionnement : saturé ou linéaire ravec respectivement une application en électronique numérique ou analogique.

  • Réponse temporelle des fonctions de transfert

    Qu’ils soient à dominante mécanique, électronique, biologique, chimique, ou même humain, le scientifique a toujours cherché à prédire le fonctionnement temporel des phénomènes et objets de son environnement. La première technique mathématique enseignée est la résolution d’une équation différentielle, technique éprouvée mais qui requiert des méthodes et une connaissance du système pour poser l’équation à résoudre. La seconde méthode consiste à déterminer la fonction de transfert du système à étudier, par des méthodes de description ou d’identification expérimentale. Pourquoi ce terme de fonction de transfert ? Car c’est l’opérateur mathématique relie le(s) entrée(s) à la sortie d’un système. Vu sous l’angle du praticien, c’est la fonction qui TRANSFORME l’entrée en sortie du système, d’où le qualificatif de fonction de transfert. I. –NOTIONS DE FONCTION DE TRANSFERT I.1.- Définition Illustrons la définition de l’utilisation de la notion de fonction de transfert sur l’exemple ci-dessous. β? θ θ entrée sortie β T On souhaite connaitre la relation entre l’angle θ de rotation du volant et l’angle β de rotation des roues d’un véhicule. Sans modéliser l’ensemble des éléments mécaniques de la chaîne cinématique de transmission, la fonction de transfert T, se définit dans cet exemple à partir de la relation Tθ=β, d’où l’expression : sortie T entrée β θ = = Remarque : la fonction de transfert est une fonction du corps des complexes de la variable f (fréquence) ou (ω pulsation), l’AFNOR préconise de l’écrire : T f ( ) pour la variable f Systèmes Electroniques pour les Communications Chapitre3 : Réponse temporelle des fonctions de transfert 20 H j ( ) ω pour la variable ω, en rappelant que ω=2πf. I.2.- Notions de boucle ouverte et boucle fermée Il est nécessaire de contrôler un système en observant sa sortie et en venant compenser les erreurs éventuelles en modifiant le signal de consigne. L’algèbre de la représentation par schémas blocs fonctionnels permet de conceptualiser la notion de boucle ouverte et boucle fermée (respectivement open or closed loop). Exemple : Considérons un système d’entrée ue , de sortie us , avec les équations de fonctionnement us = Td δ où δ = ue – Kr us Ce système peut être représenté par le diagramme fonctionnel suivant où on identifie : • une chaîne directe de fonction de transfert Td(f), • une chaîne de retour de fonction de transfert Tr(f). et où la notion de boucle fermée apparait au travers de la fonction de retour de la sortie vers l’entrée modélisée par Tr(f). Td ue us + δ - Tr On peut déduire l’expression de T, fonction de transfert globale définie par : 1 1 1 s d d r e d r r d r u T T T T u T T T T T = = = + + Remarques : 1) Le symbole ⊗ désigne le point de sommation du signal d’entrée ue et du signal de retour Tr us . 2) Le signe ‘-‘signifie que le signal de sortie us , multiplié par Tr est ramené en opposition de phase sur l’entrée. 3) Dans la suite des leçons, l’amplificateur opérationnel sera placé en tant qu’élément de la chaine directe et nous construirons différentes formes de chaines de retour ce qui confèrera à l’ensemble une nouvelle fonction de transfert. I.3.- Quel type de rétroaction pour un A.O ? Deux types de rétroaction (retour d’une partie de la sortie sur l’entrée) sont parfois possibles. En effet dans le cas de l’A.O deux entrées existent, l’entrée notée « + » et l’entrée notée «-». Les propriétés des montages à rétroaction découlent du type de rétroaction positive ou négative, laquelle va conditionner la stabilité temporelle du montage. Pour preuve, en reprenant l’équation différentielle de l’AO en boucle ouverte : 0 s c s du u A dt τ ε + = On modélise la rétroaction par la relation : sgn ( ) e r s ε α u u u r u + − = − = +     avec αr coefficient positif compris entre 0 et 1 ;* sgn(r) = fonction signe de la rétroaction ; sgn(r)= +1 pour une rétroaction positive, sgn(r)= -1 pour une rétroaction négative D’où l’équation différentielle à résoudre en boucle fermée: [ ] 0 0 1 ( ) s c s r e du u sign r A A u dt τ α + − = Equation différentielle dont la solution générale est de la forme : Chapitre3 : Réponse temporelle des fonctions de transfert Systèmes Electroniques pour les Communications 21 0 exp ( ) s r c t u K sign r A α τ   =     Où la constante K est déterminée par les conditions initiales.

Formateur

€200.00 €150.00

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *